Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm

نویسندگان

  • Hosein Abedinpourshotorban
  • Siti Mariyam Hj. Shamsuddin
  • Zahra Beheshti
  • Dayang N. A. Jawawi
چکیده

This paper presents a physics-inspired metaheuristic optimization algorithm, known as Electromagnetic Field Optimization (EFO). The proposed algorithm is inspired by the behavior of electromagnets with different polarities and takes advantage of a nature-inspired ratio, known as the golden ratio. In EFO, a possible solution is an electromagnetic particle made of electromagnets, and the number of electromagnets is determined by the number of variables of the optimization problem. EFO is a populationbased algorithm in which the population is divided into three fields (positive, negative, and neutral); attraction–repulsion forces among electromagnets of these three fields lead particles toward global minima. The golden ratio determines the ratio between attraction and repulsion forces to help particles converge quickly and effectively. The experimental results on 30 high dimensional CEC 2014 benchmarks reflect the superiority of EFO in terms of accuracy and convergence speed over other state-of-the-art optimization algorithms. & 2015 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HYBRID ARTIFICIAL PHYSICS OPTIMIZATION AND BIG BANG-BIG CRUNCH ALGORITHM (HPBA) FOR SIZE OPTIMIZATION OF TRUSS STRUCTURES

Over the past decades, several techniques have been employed to improve the applicability of the metaheuristic optimization methods. One of the solutions for improving the capability of metaheuristic methods is the hybrid of algorithms. This study proposes a new optimization algorithm called HPBA which is based on the hybrid of two optimization algorithms; Big Bang-Big Crunch (BB-BC) inspired b...

متن کامل

DESIGN OPTIMIZATION OF CABLE-STAYED BRIDGES USING MOMENTUM SEARCH ALGORITHM

Design optimization of cable-stayed bridges is a challenging optimization problem because a large number of variables is usually involved in the optimization process. For these structures the design variables are cross-sectional areas of the cables. In this study, an efficient metaheuristic algorithm namely, momentum search algorithm (MSA) is used to optimize the design of cable-stayed bridges....

متن کامل

A Hybrid Meta-Heuristic Algorithm based on Imperialist Competition Algorithm

The human has always been to find the best in all things. This Perfectionism has led to the creation of optimization methods. The goal of optimization is to determine the variables and find the best acceptable answer Due to the limitations of the problem, So that the objective function is minimum or maximum. One of the ways inaccurate optimization is meta-heuristics so that Inspired by nature, ...

متن کامل

A Meta-heuristic Algorithm for Global Numerical Optimization Problems inspired by Vortex in fluid physics

One of the most important issues in engineering is to find the optimal global points of the functions used. It is not easy to find such a point in some functions due to the reasons such as large number of dimensions or inability to derive them from the function. Also in engineering modeling, we do not have the relationships of many functions, but we can input and output them as a black box. The...

متن کامل

Addressing a Coordinated Quay Crane Scheduling and Assignment Problem by Red Deer Algorithm

Nowadays, there is much attention for planning of container terminals in the global trade centers. The high cost of quay cranes motivates both scholars and industrial practitioners especially in the last decade to develop novel optimization models to address this dilemma. This study proposes a coordinated optimization model to cover both Quay Crane Scheduling Problem (QCSP) and Quay Crane Assig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Swarm and Evolutionary Computation

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016